Series involving Riemann zeta function

Real Analysis
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Series involving Riemann zeta function

#1

Post by Grigorios Kostakos »

Prove that \[\displaystyle\sum_{n=2}^\infty \frac{(-1)^n\,\zeta(n)}{n\,(n+1)}=\frac{1}{2}(\log2+\log\pi+\gamma-2)\] where \(\zeta\) is Riemann zeta function and \(\gamma\) is Euler–Mascheroni constant.



P.S. Mentioned by akotronis on Integral involving $\Gamma$ function.
Grigorios Kostakos
akotronis
Former Team Member
Former Team Member
Posts: 36
Joined: Mon Nov 09, 2015 12:29 am

Re: Series involving Riemann zeta function

#2

Post by akotronis »

We have \(\begin{align*}\displaystyle\sum_{n\geq2}\frac{(-1)^n\zeta(n)}{n(n+1)}=\sum_{n\geq2}\frac{(-1)^n\zeta(n)}{n}-\sum_{n\geq2}\frac{(-1)^n\zeta(n)}{n+1}:=A-B\end{align*}\).

Now from the Taylor series of \(\ln(1-x)\) it is \(\begin{align}\label{1}\displaystyle\sum_{n\geq2}\frac{x^n}{n}&=-\ln(1-x)-x,\hspace{10ex}&x\in[-1,1)\tag{1}\qquad\text{and}\\\label{2}\sum_{n\geq2}\frac{x^n}{n+1}&=-\frac{\ln(1-x)}{x}-1-\frac{x}{2},\hspace{10ex}&x\in[-1,1)\tag{2}.\end{align}\)

For B:

\(\begin{align*}B&=\sum_{n\geq2}\frac{(-1)^n}{n+1}\left(1+\sum_{k\geq1}\frac{1}{k^n}\right)\\&\stackrel{*}{=}\sum_{n\geq2}\frac{(-1)^n}{n+1}+\sum_{k\geq2}\sum_{n\geq2}\frac{(-1/k)^n}{n+1}\\&\stackrel{(2)}{=}\ln2-\frac{1}{2}+\sum_{k\geq2}\frac{1}{2k}-1+k\ln\left(1+\frac{1}{k}\right)\\&=\ln2-\frac{1}{2}+\lim_{n\to+\infty}\left(\frac{1}{2}(H_n-1)-(n-1)+\ln\prod_{k=2}^{n}\frac{(k+1)^{k}}{k^k}\right)\\&=\ln2-\frac{1}{2}+\lim_{n\to+\infty}\left(\frac{1}{2}(H_n-1)-n+1+\ln\prod_{k=2}^{n}\frac{(k+1)^{k+1}}{k^k}\frac{1}{k+1}\right)\\&=\ln2-\frac{1}{2}+\lim_{n\to+\infty}\left(\frac{1}{2}(H_n-1)-n+1+\ln\frac{2}{(n+1)!}+\ln\frac{(n+1)^{n+1}}{4}\right)\\&\to1+\frac{\gamma}{2}-\frac{\ln2}{2}-\frac{\ln\pi}{2},\end{align*}\)

where we used stirling's approximation and that \(H_n=\ln n+\gamma+\mathcal O(n^{-1})\). (* the change of the summation order is justified due to absolute convergence).

With exactly the same method, and using (1) this time, we find that \(A=\gamma\) and the result follows.

A similar problem which is solved with the same technique can be found in the current issue of MATHPROBLEMS magazine here (http://mathproblems-ks.com/?wpfb_dl=8) page 121.

For generalizations of this problem and the connection it has with the topic discussed here (Integral involving $\Gamma$ function), one can see at the articles

1) J.W.L. Glaisher, Relations connecting quantities of the form \(1 + 2^{-n} + 3^{-n} + 4^{-n}+\cdots\) Messenger of Mathematics 44 (1914 - 1915) 1 - 10. (http://archive.org/details/messengerofmathe44cambuoft) and

2) S. Ramanujan, A series for Euler’s constant, Messenger of Mathematics 46 (1917) 73 - 80. (http://archive.org/details/messengerofmathe46cambuoft)
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Series involving Riemann zeta function

#3

Post by Tolaso J Kos »

Grigorios Kostakos wrote:Prove that \[\displaystyle\sum_{n=2}^\infty \frac{(-1)^n\,\zeta(n)}{n\,(n+1)}=\frac{1}{2}(\log2+\log\pi+\gamma-2)\] where \(\zeta\) is Riemann zeta function and \(\gamma\) is Euler–Mascheroni constant.



P.S. Mentioned by akotronis on Integral involving $\Gamma$ function.

Here is another solution.

Take the logarithm of the Weierstass product form of the Gamma function
$$ \frac{1}{\Gamma(x)}=xe^{\gamma x}\prod_{n=1}^\infty \left( 1+\frac{x}{n}\right)e^{-x/n}$$
to obtain $$-\log\Gamma(x)=\log x+\gamma x+\sum_{n=1}^\infty \log\left(1+\frac{x}{n}\right)-\frac{x}{n}$$
Now, $$\sum_{n=1}^\infty \log\left(1+\frac{x}{n}\right)-\frac{x}{n} =-\sum_{n=1}^\infty\sum_{m=2}^\infty\frac{\left(-\frac{x}{n}\right)^m}{m}
\\\\=-\sum_{m=2}^\infty\frac{(-1)^m x^m}{m}\sum_{n=1}^\infty\frac{1}{n^m}=-\sum_{m=2}^\infty\frac{(-1)^m x^m \zeta(m)}{m}$$
so that $$\sum_{n=2}^\infty\frac{(-1)^n \zeta(n)}{n}x^n=\gamma x+\log(x)+\log\Gamma(x)$$
and $$\sum_{n=2}^\infty\frac{(-1)^n \zeta(n)}{n(n+1)}=\int_{0}^{1}(\gamma x+\log(x)+\log\Gamma(x))\,{\rm d}x=\frac{\gamma}{2}-1+\int_{0}^{1}\log\Gamma(x)\,{\rm d}x$$

$\int_{0}^{1}\log\Gamma(x)dx=\log\sqrt{2\pi}$ has been proved above at the topic linked at the first post.
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 3 guests