Questions & Answers

Confidence Intervals

0
  1. Let \( \displaystyle X_{1} , \dots X_{n} \) be a random sample from a population with distribution \( \displaystyle Exp\left(\frac{1}{\theta}\right) \), where \( \theta > 0 \). Find a confidence interval for \( \theta \).
  2. Let \( \displaystyle X_{1} , \dots X_{n} \) be a random sample from a population with density 

\[ \displaystyle f(x| \theta_{1},\theta_{2}) = \frac{\theta_{1}}{\theta_{2}} x^{\theta_{2}-1}{e}^{-\frac{x^{\theta_{2}}}{\theta_{1}}} \]

where \( \theta_{1}>0,\theta_{2}>0,x>0 \) and \( \theta_{2} \) is known. Find a confidence interval for \( \theta_{1} \).

 

  • There is no reply for this discussion yet
Your Response
Please login first in order for you to submit comments

Questions & Answers | Tags

Mathimatikoi on line

We have 281 guests and no members online

Contact

info(at)mathimatikoi.org
2012-2016 - mathimatikoi.org