Questions & Answers
Accepted Answer

The matrices \(\displaystyle{A\,,B\in\mathbb{M}_{n}(\mathbb{R})}\) are simultaneously diagonizable, that is there exists an invertible matrix
\(\displaystyle{C\in\mathbb{M}_{n}(\mathbb{R})}\) and diagonizable matrices \(\displaystyle{P\,,Q\in\mathbb{M}_{n}(\mathbb{R})}\)
such that \(\displaystyle{A=C\,P\,C^{1}\,\,,B=C\,Q\,C^{1}}\) . Therefore,
$$\begin{aligned} 0&=\rm{det}(A^2+B^2)\\&=\rm{det}(C\,P^2\,C^{1}+C\,Q^2\,C^{1})\\&=\rm{det}(C\,(P^2+Q^2)\,C^{1})\\&=\rm{det}(P^2+Q^2)\\&=\prod_{i=1}^{n}\left(p_{i}^2+q_{i}^2\right)\,\,(\ast) \end{aligned}$$
where \(\displaystyle{p_{i}\,,1\leq i\leq n}\) are the diagonial elements of \(\displaystyle{P}\) and \(\displaystyle{q_{i}\,,1\leq i\leq n}\) of \(\displaystyle{Q}\) .
According to the relation \(\displaystyle{(\ast)}\) we have that : \(\displaystyle{p_{i}^2+q_{i}^2=0}\) for some \(\displaystyle{i\in\left\{1,...,n\right\}}\) .
But \(\displaystyle{p_{i}\,,q_{i}\in\mathbb{R}}\), so : \(\displaystyle{p_{i}=q_{i}=0}\) and then :
\(\displaystyle{\rm{det}(A)=\rm{det}(P)=\prod_{i=1}^{n}p_{i}=0=\prod_{i=1}^{n}q_{i}=\rm{det}(Q)=\rm{det}(B)}\) .2 votes by Grigorios Kostakos, Apostolos J. Kos
0 response Add Yours
 There is no reply for this discussion yet