Page 1 of 1
Integrability of floor function
Posted: Sun Jan 17, 2016 12:29 am
by Tolaso J Kos
Let \( \left \lfloor x \right \rfloor \) denote the floor function.
a) Prove that it is integrable on \( [-n, n ] , \;\; n \in \mathbb{N} \).
b) Evaluate the integral:
$$\mathcal{J}=\int_{-n}^{n}\left \lfloor x \right \rfloor\, {\rm d}x$$
Re: Integrability of floor function
Posted: Sun Jan 17, 2016 12:29 am
by Papapetros Vaggelis
Hello Tolaso.
a) If \(\displaystyle{n\in\mathbb{N}}\), then :
\(\displaystyle{\left[-n,n\right]=\bigcup_{k=0}^{2\,n-1}\left[k-n,k+1-n\right]}\) and
\(\displaystyle{\forall\,k\in\left\{0,1,...,2\,n-1\right\}: [x]=k-n}\) if \(\displaystyle{x\in\left[k-n,k+1-n\right]}\) .
So, the floor function is integrable on \(\displaystyle{\left[-n,n\right]}\) since it is bounded on \(\displaystyle{\left[-n,n\right]}\)
and it has only \(\displaystyle{2\,n-1}\) points of discontinuity.
b) Since
\(\displaystyle{\left(k-n,k+1-n\right)\cap \left(m-n,m+1-n\right)=\varnothing\,\,,k\,,m\in\left\{0,1,...,2\,n-1\right\}\,,k\neq m}\)
we have that
\(\displaystyle{\begin{aligned} J&=\sum_{k=0}^{2\,n-1}\int_{k-n}^{k+1-n}[x]\,\mathrm{d}x\\&=\sum_{k=0}^{2\,n-1}\int_{k-n}^{k+1-n}(k-n)\,\mathrm{d}x\\&=\sum_{k=0}^{2\,n-1}(k-n)\\&=\sum_{k=0}^{2\,n-1}k-\sum_{k=0}^{2\,n-1}n\\&=\sum_{k=1}^{2\,n-1}k-2\,n^2\\&=\dfrac{\left(2\,n-1\right)\cdot 2\,n}{2}-2\,n^2\\&=n\cdot \left(2\,n-1\right)-2\,n^2\\&=2\,n^2-n-2\,n^2\\&=-n\end{aligned}}\)