Page 1 of 1
Evaluate \(f^{\left (15 \right)}(0) \)
Posted: Sat Jul 09, 2016 10:26 am
by Tolaso J Kos
Let \( f(x)=\sin \left (x^3 \right) \). Evaluate \(f^{(15)}(0) \).
Re: Evaluate \(f^{\left (15 \right)}(0) \)
Posted: Sat Jul 09, 2016 10:27 am
by achilleas
It's known that
\(\sin x=\sum_{n=0}^{\infty}(-1)^n\dfrac{x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\cdots\).
for all \(x\in \mathbb{R}\). Hence
\(\sin (x^3)=\sum_{n=0}^{\infty}(-1)^n\dfrac{x^{3(2n+1)}}{(2n+1)!}=x^3-\dfrac{x^9}{3!}+\dfrac{x^{15}}{5!}-\cdots\).
for all \(x\in \mathbb{R}\). Since
\(f(x)=\sum_{n=0}^{\infty}\dfrac{f^{(n)}(0)}{n!}x^n\)
for all \(x\), comparing the coefficients of \(x^{15}\) we see that
\(\dfrac{f^{(15)}(0)}{15!}=\dfrac{1}{5!}\).
Therefore,
\(f^{(15)}(0)=\dfrac{15!}{5!}\)