Le me prove this Grigoris, \( \displaystyle -\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx\) just in case it appears again, so that we give it as a link.
Applying the sub \( \displaystyle u=\frac{\pi}{2}-x \) gives us:
\( \begin{aligned}
\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx &\overset{u=\pi/2-x}{=\! =\! =\! =\! =\! } \int_{0}^{\pi/2}\ln \left ( \sin \left ( \frac{\pi}{2}-u \right ) \right ), du\\
&= \int_{0}^{\pi/2}\ln \left ( \cos u \right )\, du\\
&= \int_{0}^{\pi/2}\ln \left ( \cos x \right )\, dx\\
\end{aligned} \)
Adding by parts we get:
$$\left.\begin{matrix}
\displaystyle J=\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx & \\
\displaystyle J=\int_{0}^{\pi/2}\ln \left ( \cos x \right )\, dx&
\end{matrix}\right\}(+)\Rightarrow 2J=\int_{0}^{\pi/2} \ln \left ( \sin x\cos x \right )\, dx\Leftrightarrow 2J=\int_{0}^{\pi/2}\ln \left ( \frac{\sin 2x}{2} \right )\, dx$$
$$\begin{aligned}
2J=\int_{0}^{\pi/2}\ln \left ( \frac{\sin 2x}{2} \right )\, dx &\iff 2J=\int_{0}^{\pi/2}\ln \left ( \sin 2x \right )\, dx-\int_{0}^{\pi/2}\ln 2\, dx \\
&\iff 2J=\int_{0}^{\pi/2}\ln \left ( \sin 2x \right )\, dx-\frac{\pi\ln 2}{2} \\
&\overset{u=2x}{\iff}2J=\frac{1}{2}\int_{0}^{\pi}\ln \left ( \sin x \right )\, dx-\frac{\pi\ln 2}{2}\\
&\iff 2J= \int_{0}^{\pi/2}\ln \left ( \sin x \right )-\frac{\pi\ln 2}{2} \\
&\iff 2J=J-\frac{\pi\ln 2}{2} \\
&\iff J=-\frac{\pi\ln 2}{2}
\end{aligned}$$
Thus \( \displaystyle -\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx=\frac{\pi\ln 2}{2} \).
.....................................................................................................................................
For reasons of variety let me write another proof using \( {\rm B}, \Gamma \) functions.
First of all we apply the sub \( u=\sin^2 x\) thus we get:
$$\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx\overset{u=\sin x}{=\! =\! =\! =\!}\frac{1}{4}\int_{0}^{1}\frac{\ln u}{\sqrt{u\left ( 1-u \right )}}\, du\overset{u={\rm 1-v}}{=\! =\! =\! =\!}\frac{1}{4}\int_{0}^{1}\frac{\ln \left ( 1-{\rm v} \right )}{\sqrt{{\rm v\left ( 1-v \right )}}}\, d{\rm v}$$
Adding the two last integrals and dividng by two we get that:
$$\int_{0}^{\pi/2}\ln \left ( \sin x \right )\, dx=\frac{1}{4}\int_{0}^{1}\frac{\ln \sqrt{u\left ( 1-u \right )}}{\sqrt{u\left ( 1-u \right )}}\, du=-\frac{1}{4}\frac{\mathrm{d} }{\mathrm{d} s}{\rm B}\left ( s, s \right )\bigg|_{s=\frac{1}{2}}$$
It is known that: \( \displaystyle {\rm B}\left ( s, s \right )=\frac{\Gamma (s)\Gamma (s)}{\Gamma (s+s)}=\frac{\Gamma^2(s)}{\Gamma (2s)} \) and \( \displaystyle \frac{\mathrm{d} }{\mathrm{d} s}{\rm B}(s, s)=2{\rm B}(s, s)\left ( \psi (s)-\psi (2s) \right ) \). Also it holds that \( \displaystyle {\rm B}\left ( \frac{1}{2}, \frac{1}{2} \right )=\frac{\Gamma \left ( \frac{1}{2} \right )\Gamma \left ( \frac{1}{2} \right )}{\Gamma \left ( 1 \right )}=\frac{\sqrt{\pi}\sqrt{\pi}}{1}=\pi \) and \( \displaystyle 2\psi (2s)=\psi (s)+\psi \left ( s+\frac{1}{2} \right )+2\ln 2 \).The last equation for \( s=1/2 \) gives: \( \psi (1/2)-\psi (1)=-2\ln 2 \).
Combining them all together gives that: \( \displaystyle \int_{0}^{\pi/4}\ln \left ( \sin x \right )\, dx=-\frac{\pi\ln 2}{2} \).
.....................................................................................................................................
There is also a solution using complex analysis.
However I don't see the point of writting that, since it is a too long solution, and second because we already have two.