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Asymmetry is an electronic mathematical journal which aims at giving the chance to the

readers, and the editor himself, to work on interesting mathematical problems or find in-

formation about various mathematical topics. The problems presented may either be orig-

inal or taken from the existing literature or the web. Attempt will be made to be pre-

cise as regards the problems’ original source. The level of the topics is undergraduate

and beyond. Readers are encouraged by the editor to submit proposals and/or solutions

to proposed problems. Proposals and solutions are preferred to be in LTEX format using

what is necessary from the preamble presented in http://akotronismaths.blogspot.gr/p/

asymmetry-electronic-mathematical.html, must be legible and should appear on separate

sheets, each indicating the name of the sender. Drawings must be suitable for reproduction.

Proposals should be accompanied by solutions. An asterisk (*) indicates that no solution

is available at the time the problem is published. Questions concerning proposals and/or

solutions can be sent by e-mail to akotronis@gmail.com.

Editor’s note

The editor would like to invite the interested reader to visit the new mathematical forum

www.mathimatikoi.org

This forum is for university level mathematics, in the English language, and was made by

a group of Greek mathematicians.

Problems and Solutions
The source of the problems will appear along with the publication of the solutions

The Problems

V3-1 Proposed by José Luis Dı́az–Barrero, Technical University of Catalonia (BARCELONA TECH),

Barcelona, Spain.

Let a1, a2, . . . , an, be n ≥ 2 positive real numbers. Prove that

a1

a2 + 3
7

√
a1a

6

2

+
a2

a3 + 3
7

√
a2a

6

3

+ . . .+
an

a1 + 3
7

√
ana

6

1

≥ n
4
.
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V3-2 Proposed by the editor

If Fn, Ln and Tn are the n−th Fibonacci
1
, Lucas

2
and Triangular

3
number respectively, show that

2F5n + n
2TnFn − Ln+1 =



0 (mod 5) , n 6= 0 (mod 5)

2 (mod 5) , n = 5 (mod 20)

1 (mod 5) , n = 10 (mod 20)

3 (mod 5) , n = 15 (mod 20)

4 (mod 5) , n = 0 (mod 20)

, n ≥ 1.

V3-3 Evaluate

∑
n≥1

(−1)n
∏n
j=1

(
3

2
− j
)

(2n+ 1)n!
if it converges.

V3-4 Let an be the sequence defined by an+1 = an + a
−k
n , a1 > 0, k ∈ R.

1. Show that, for k > −1:

an = (k+ 1)
1

k+1n
1

k+1

(
1 +

k

2(k+ 1)2
lnn

n
+O

(
n−1

))
2. (*) Can we make a two terms estimate, as in 1., when k < −1 ?

V3-5 Show that for n ∈ N∗:

∑
r≥1

(−1)r

r
(
n+r
n

) = 2
n
ln 2 +

n−1∑
k=0

(−1)n−k
(
n

k

)
2
n − 2

k

n− k
.

V3-6 Let F(x) :=

∫+∞
0

1

et + xt
dt for the values of x ∈ R for which it can be defined.

1. Find the MacLaurin expansion of F(x) at 0, if it has one, and determine it’s radius of

convergence.

2. Show that lim
x→−e+

(x+ e)1/2
∫+∞
0

1

et + xt
dt = π

√
2

e
.

3. (*) Examine whether there exists a real number a < 0 such that

lim
x→−e+

(x+ e)a

(
(x+ e)1/2

∫+∞
0

1

et + xt
dt− π

√
2

e

)
∈ R∗

and, for this real number a, in the case it exists, compute the limit.

1=
1√
5
(an − bn), where a =

1 +
√

5

2
, b =

1 −
√

5

2
see http://en.wikipedia.org/wiki/Fibonacci_number

2= an + bn, where a =
1 +

√
5

2
, b =

1 −
√

5

2
, see http://en.wikipedia.org/wiki/Lucas_number

3=
n(n + 1)

2
, see http://en.wikipedia.org/wiki/Triangular_number
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Solutions

V2-1 Let f : [−1, 1]→ R be an odd and Riemann integrable function such that

∫
2kπ

0

x2f(sin x)dx 6= 0 for

k ∈ N. Evaluate ∑
k≥1

∫π
0
f(sin x)dx∫

2kπ
0
x2f(sin x)dx

.

Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria

Let the integral

∫π
0

f(sin x)dx be denoted by α. Note that

∫
2(n+1)π

2nπ

x2f(sin x)dx =

∫
2π

0

(2nπ+ x)2f(sin x)dx

=

∫π
0

(2nπ+ x)2f(sin x)dx+∫π
0

(2(n+ 1)π− x)2f(sin(2π− x))dx (x← 2π− x.)

=

∫π
0

(
(2nπ+ x)2 − (2(n+ 1)π− x)2

)
f(sin x)dx (f is odd.)

= −4π(2n+ 1)

∫π
0

(π− x)f(sin x)dx (1)

But the change of variables x← π− x shows also that∫π
0

(π− x)f(sin x)dx =

∫π
0

xf(sin x)dx

and consequently∫π
0

(π− x)f(sin x)dx =
1

2

(∫π
0

(π− x)f(sin x)dx+

∫π
0

xf(sin x)dx

)
=
π

2

∫π
0

f(sin x)dx =
π

2
α.

So, replacing in (1) we see that

∫
2(n+1)π

2nπ

x2f(sin x)dx = −2π2α(2n+ 1). It follows that

∫
2kπ

0

x2f(sin x)dx = −2π2α

k−1∑
n=0

(2n+ 1) = −2π2αk2

Thus ∫π
0
f(sin x)dx∫

2kπ
0
x2f(sin x)dx

= −
1

2π2
· 1

k2

and ∞∑
k=1

∫π
0
f(sin x)dx∫

2kπ
0
x2f(sin x)dx

= −
1

2π2

∞∑
k=1

1

k2
= −

1

12
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which is the desired conclusion. �

Remark by the editor:

The above problem, asking to show that

∫
2kπ

0

x2f (sin x) dx = −2k2π2

∫π
0

f (sin x) dx in the case that

f : [−1, 1] → R is odd and Riemann integrable appears in [1] p.429 and in the version presented

here has been discussed on the Greek forum www.mathematica.gr (www.mathematica.gr/forum/

viewtopic.php?f=9&t=5137) and on the Art of Problem Solving forum (www.artofproblemsolving.

com/Forum/viewtopic.php?f=67&t=333185).

V2-2 Proposed by Spyros Kapellides Ioannina Greece

Let p(x) be a polynomial with real coefficients such that {p(n)} <
1

n
, ∀n ∈ N. Show that

p(n) ∈ Z, ∀n ∈ N.

{ · } denotes the fractional part.

Solution: O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria
The basic ingredient is the following Lemma.

Lemma. Let P be a polynomial with real coefficients, then(
lim
n→∞ e2πiP(n) = 1

)
=⇒ (∀n ∈ N, P(n) ∈ Z)

Proof. We will prove this by induction on the degree d of P.

If d ≤ 0, then P is constant, that is P(n) = P(0) for every n. Using the hypothesis we obtain

e2πiP(0) = 1, and this implies that P(0) ∈ Z which is the desired conclusion, in this case.

Now, consider d ≥ 1, and suppose that result is true for every real polynomial of degree smaller

than d. Now, consider a polynomial P of degree d with real coefficients, such that lim
n→∞ e2πiP(n) = 1.

It follows that we also have lim
n→∞ e2πiP(n−1) = 1, and consequently

lim
n→∞ e2πi(P(n)−P(n−1)) = 1

But Q(X)
def
= P(X) − P(X − 1) is a real polynomial of degree d − 1, and the induction hypothesis

implies that Q(n) ∈ Z for every n ∈ N. It follows that,

∀n ∈ N, P(n) − P(0) =

n∑
k=1

Q(k) ∈ Z. (1)

This proves that e2πiP(n) = e2πiP(0) for every n ∈ N. Taking the limit as n tend to +∞ we obtain

e2πiP(0) = 1, that is P(0) ∈ Z. Combining this with (1) we conclude that P(n) ∈ Z for every n ∈ N,

and the lemma follows by induction.
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Now, consider a polynomial with real coefficients such that lim
n→∞{P(n)} = 0. (In particular, this is

true if {P(n)} < 1/n for every n ∈ N.) Using the well-known inequality

∣∣∣eiθ − 1

∣∣∣ ≤ |θ| we conclude

that ∣∣∣e2πiP(n) − 1

∣∣∣ = ∣∣∣e2πi{P(n)} − 1

∣∣∣ ≤ 2π{P(n)}

and consequently lim
n→∞ e2πiP(n) = 1. Applying the Lemma we conclude that P(n) ∈ Z for every

n ∈ N, which is the desired conclusion. �

V2-3 Let xn the sequence defined by xn = x2n−1
− 2, n ≥ 1 and x0 = 3. Evaluate

∑
n≥0

(
n∏
k=0

xk

)−1

,

if the series converges.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria

Let α = ln

(
3 +
√

5

2

)
so that 2 cosh(α) = 3 = x0. A simple induction argument shows that

xn = 2 cosh(2nα) for every n ≥ 0. Now noting that xn =
sinh(2n+1α)

sinh(2nα)
we conclude that

(
n∏
k=0

xk

)−1

=
sinh(α)

sinh(2n+1α)

But

cosh(t)

sinh(t)
−

cosh(2t)

sinh(2t)
=

2 cosh
2(t) − cosh(2t)

sinh(2t)
=

1

sinh(2t)
.

So that, (
n∏
k=0

xk

)−1

= sinh(α)

(
cosh(2nα)

sinh(2nα)
−

cosh(2n+1α)

sinh(2n+1α)

)
.

Thus, for m > 1, we have

m−1∑
n=0

(
n∏
k=0

xk

)−1

= sinh(α)

(
cosh(α)

sinh(α)
−

cosh(2mα)

sinh(2mα)

)
.

Taking the limit as m tend to +∞ we see that this series does converge and that

∞∑
n=0

(
n∏
k=0

xk

)−1

= cosh(α) − sinh(α) = e−α =
3 −
√

5

2
.

which is the desired conclusion. �
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Solution 2: Let yn := x2
n

+ x−2
n

, n ≥ 0 where x is any of the roots
3±
√

5

2
of x2 − 3x + 1. It

is immediate to check that yn satisfies the recurrence relation with the given initial condition, so

yn = xn and for the given sum equals:

∑
n≥0

(
n∏
k=0

yk

)−1

=
∑
n≥0

n∏
k=0

x2
k

(1 + x2k+1)
=

1

x

∑
n≥0

x2
n+1

(1 + x2)(1 + x4) · · · (1 + x2n+1)

= lim
N→+∞

1

x

(
1 −

1

1 + x2
+

N−1∑
n=0

x2
n+1

(1 + x2)(1 + x4) · · · (1 + x2n+1)

)

= lim
N→+∞

1

x

(
1 −

1

1 + x2
+

N−1∑
n=0

(
1

(1 + x2)(1 + x4) · · · (1 + x2n)
−

1

(1 + x2)(1 + x4) · · · (1 + x2n+1)

))

=
1

x

(
1 − lim

N→+∞
1

(1 + x2)(1 + x4) · · · (1 + x2N)

)
.

Now when x =
3 +
√

5

2
> 1 the above is clearly equal to

1

x
=

3 −
√

5

2
and, when (0 <) x =

3 −
√

5

2
< 1 is equal to

1

x

(
1 − lim

N→+∞
1

(1 + x2)(1 + x4) · · · (1 + x2N)

)
=

1

x

(
1 − lim

N→+∞
1

1−x2

1−x2
(1 + x2)(1 + x4) · · · (1 + x2N)

)

=
1

x

(
1 − lim

N→+∞
1 − x2

1 − x2n+1

)
= x.

Solution 3: Considering yn as in the above solution, it easy to see that the given series converges

in each case of x, since, when (0 <) x =
3 −
√

5

2
< 1, we have

0 <

(
n∏
k=0

yn

)−1

=
x2

n+1−1

(1 + x2)(1 + x4) · · · (1 + x2n+1)
< x2

n+1−1

and when x =
3 +
√

5

2
> 1 we have 0 <

(
n∏
k=0

yn

)−1

<

(
1

x

)2
n+1−1

.

Since the series converges, we set

∑
n≥0

(
n∏
k=0

yk

)−1

=
y0 − λ

2
and we will determine λ. A simple

inductive argument, using the recurrence relation, shows that

yn − λy0y1 · · ·yn−1

2
=

1

yn
+

1

ynyn+1

+ · · · , n ≥ 1,

6 Typesetting : LTEX
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so λ = lim
n→+∞ yn

y0y1 · · ·yn
.

But from the recurrence relation we have y2

n − 4 = (yn + 2)(yn − 2) = y2

n−1
(y2

n−1
− 4) =

y2

n−1
y2

n−2
(y2

n−2
− 4) = · · · (y0y1 · · ·yn)2 (y2

0
− 4), so

yn

y0y1 · · ·yn
=

√
y2

0
− 4 +

(
2

y0y1 · · ·yn

)2 →√
y2

0
− 4 + 0 =

√
5

which solves the problem. �

Remark: This problem, as well as solutions 2 and 3, appear in [2] with the argument that shows

that the series converges in solution 3 added by the editor.

V2-4 Proposed by Konstantinos Tsouvalas, University of Athens, Athens, Greece.

Let an =

(
n∏
k=0

(
n

k

)) 1

n(n+1)

.

1. Show that lim
n→+∞an =

√
e and

2. evaluate lim
n→+∞ n(an −

√
e)

lnn
, if it exists.

Solution : O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria
Clearly,

n∏
k=0

(
n

k

)
=

n∏
k=1

(
n(n− 1) · · · (n− k+ 1)

k!

)

=

n∏
k=1

(
n2(n− 1)2 · · · (n− k+ 1)2

n!
· (n− k)!

k!

)

=

n∏
k=1

(
n2(n− 1)2 · · · (n− k+ 1)2

n!

)
·
n∏
k=1

(
(n− k)!

k!

)

=

(
nn(n− 1)n−1 · · · 22

1
1
)2

(n!)n+1

It follows that

ln(an) =
1

n(n+ 1)

n∑
k=1

2k lnk−
1

n
ln(n!) (1)

7 Typesetting : LTEX
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Now, let bk =

(
k2 + k+

1

6

)
lnk−

k2

2
. We have

bk − bk−1 =

(
k2 + k+

1

6

)
lnk−

k2

2
−

(
k2 − k+

1

6

)
ln(k− 1) +

(k− 1)2

2

= 2k lnk− k+
1

2
−

(
k2 − k+

1

6

)
ln

(
1 −

1

k

)
= 2k lnk− k+

1

2
+

(
k2 − k+

1

6

)(
1

k
+

1

2k2
+

1

3k3
+O

(
1

k4

))
= 2k lnk+O

(
1

k2

)
This proves that the series

∑
(bk − bk−1 − 2k lnk) is convergent and consequently there is a real

constant α such that, for n in the neighborhood of +∞, we have

n∑
k=1

2k lnk =

(
n2 + n+

1

6

)
lnn−

n2

2
+ α+ o(1)

(A = eα/2 is called the Glaisher-Kinkelin constant.) On the other hand it is well-known ln(n!) =(
n+

1

2

)
lnn− n+ ln

√
2π+O(1/n). Replacing in (1), we conclude that for large n we have

ln(an) =
1

2
−

lnn

2n
+

1 − ln(2π)

2n
+O

(
lnn

n2

)
Thus

an =
√
e

(
1 −

lnn

2n
+

1 − ln(2π)

2n
+O

(
ln

2 n

n2

))
In particular,

lim
n→∞an =

√
e and lim

n→∞ n(an −
√
e)

lnn
= −

√
e

2
.

This answers 1. and 2. �

Solution 2: By the editor

Euler MacLaurin summation formula
4

says that

If : [a, b] → R where a, b ∈ Z is a 2m-times continuously differentiable function, then

for every m ∈ N

b∑
k=a

f(k) =

∫b
a

f(x)dx +
f(b) + f(a)

2
+

m∑
k=1

(
f(2k−1)(b) − f(2k−1)(a)

) B2k

(2k)!
+ Rm,f,a,b

holds, where

Rm,f,a,b = −

∫b
a

f(2m)(x)
B2m ({x})

(2m)!
dx

4
see http://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

8 Typesetting : LTEX

http://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula


Asymmetry Vol.3 March 2013

B2m({x}) is the 2m-th periodic Bernoulli polynomial
5

and B2m the 2m-th Bernoulli

number
6
.

Furthermore, for fixed n ∈ N, the bound |Bn({x})| ≤
2n!

(2π)n
ζ(n) for x ∈ R is true, where ζ is the

Riemann zeta function.
7

Now for a = 1, b = k, m = 1 and f(x) = ln x we get, (since B2 = 1/6),

k∑
m=1

lnm =

∫k
1

ln xdx+
lnk

2
+

1

12

(
1

k
− 1

)
+

1

2

∫k
1

B2 ({x})

x2
= k lnk− k+

lnk

2
+O(1), k ≥ 1, (1)

where the constant at the O is independent of k due to the bound of Bn({x}).

Once again, for a = 1, b = n, m = 1 and f(x) = x ln x we get

n∑
k=1

k lnk =

∫n
1

x ln xdx+
n lnn

2
+

lnn

12
+

1

2

∫n
1

B2 ({x})

x

=
n2

lnn

2
−
n2

4
+
n lnn

2
+O (lnn) , n→ +∞, (2)

Now we write

an = exp

(
1

n(n+ 1)

n∑
k=0

ln

(
n

k

))
= exp

(
1

n(n+ 1)

n∑
k=0

(lnn! − lnk! − ln(n− k)!)

)

= exp

(
1

n

n∑
k=1

lnk−
2

n(n+ 1)

n∑
k=1

k∑
m=1

lnm

)

but

n∑
k=1

k∑
m=1

lnm
(1)
=

n∑
k=1

(
k lnk− k+

lnk

2
+O(1)

)
(1),(2)
=====

n2
lnn

2
−

3n2

4
+ n lnn+O(n),

so

an
(1),(2)
===== exp

(
lnn− 1 +

lnn

2n
+O

(
n−1

)
−

2

n(n+ 1)

(
n2

lnn

2
−

3n2

4
+ n lnn+O(n)

))
= exp

(
1

2
−

lnn

2n
+O

(
n−1

))
=
√
e−

√
e lnn

2n
+O

(
n−1

)
5
see http://en.wikipedia.org/wiki/Bernoulli_polynomial

6
see http://en.wikipedia.org/wiki/Bernoulli_numbers

7
see http://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula#The_remainder_term
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which answers both parts of the problem. �

Solution 3 (for part 1): By the editor

The following elementary Lemma can help us avoid the use of Euler MacLaurin summation

formula, however, the estimate that can be made based on this for the sums

k∑
m=1

lnm and

n∑
k=1

k lnk

is not that accurate to answer the second part of the problem.

Lemma. Let f : [M,N]→ R be a monotone function. Then∣∣∣∣∣
N∑

k=M

f(k) −

∫N
M

f(x)dx

∣∣∣∣∣ ≤ max
x∈[M,N]

{|f(M)| , |f(N)|}.

Proof. Assume that f is decreasing and the other case we can work with −f. We clearly have

f(k+ 1) ≤
∫k+1

k

f(x)dx ≤ f(k) for k=M,. . . ,N-1 so summing for these values of k we get

−f(M) +

N∑
k=M

f(k) ≤
∫N
M

f(x)dx ≤
N∑

k=M

f(k) − f(N),

which gives the desired result.

Applying the Lemma on f(x) = ln x on [1, k] we get

∣∣∣∣∣
∫k
1

ln xdx−

k∑
m=1

lnm

∣∣∣∣∣ ≤ lnk, k ≥ 1, so

k∑
m=1

lnm =

∫k
1

ln xdx+O (lnk) = k lnk− k+O (max{1, lnk}) , k ≥ 1.

Applying it again on f(x) = x ln x on [1, n] we get

n∑
k=1

k lnk =

∫n
1

x ln xdx+O (n lnn) =
n2

lnn

2
−
n2

4
+O (n lnn) , n→ +∞.

Now plugging the above on an = exp

(
1

n

n∑
k=1

lnk−
2

n(n+ 1)

n∑
k=1

k∑
m=1

lnm

)
we get

an =
√
e+O

(
lnn

n

)
.

�
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V2-5 Evaluate

∫
1

0

√
4x− 4x2 tanh

−1

(√
4x− 4x2

)
dx.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
Let us denote the considered integral by I. The graph of the integrand is symmetric with respect

to the line x = 1/2 so

I = 2

∫
1

1/2

√
4x− 4x2 tanh

−1

(√
4x− 4x2

)
dx

Next we make the change of variables t =
2x− 1

1 +
√

4x− 4x2
⇐⇒ x =

(1 + t)2

2(1 + t2)
, we find that

I = −

∫
1

0

2(1 − t2)2

(1 + t2)3
ln t dt

Integrating by parts, after noting that(
x− x3

(1 + x2)2
+ arctan x

)′
=

2(1 − x2)2

(1 + x2)3

we conclude that

I = −

[(
t− t3

(1 + t2)2
+ arctan t

)
ln t

]1
0

+

∫
1

0

(
1 − t2

(1 + t2)2
+

1

t
arctan t

)
dt

=

∫
1

0

1 − t2

(1 + t2)2
dt+

∫
1

0

arctan t

t
dt

=

[
t

1 + t2

]1
0

+

∫
1

0

arctan t

t
dt

=
1

2
+

∫
1

0

arctan t

t
dt

The remaining integral equals the well-known Catalan constant G

G =

∫
1

0

arctan t

t
dt =

∫
1

0

− ln t

1 + t2
dt =

∞∑
k=0

(−1)k

(2k+ 1)2
≈ 0.915965594177.

So, I =
1

2
+G ≈ 1.415965594177. �

Solution 2: By the editor

We have:
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S : =

∫
1

0

√
4x(1 − x) tanh

−1
√

4x(1 − x)dx

=
1

2

∫
1

0

√
4x(1 − x) ln

(
1 +

√
4x(1 − x)

1 −
√

4x(1 − x)

)
dx (x = cos

2 y)

=
1

2

∫π/2
0

sin
2(2y) ln

(
1 + sin(2y)

1 − sin(2y)

)
dy (2y = π/2 − x)

=
1

4

∫π/2
−π/2

cos
2 x ln

(
1 + cos x

1 − cos x

)
dx

=
1

2

∫π/2
0

cos
2 x ln

(
1 + cos x

1 − cos x

)
dx

(
1 + cos x

1 − cos x
= cot

2
x

2

)
=

∫π/2
0

cos
2 x ln

(
cot

x

2

)
dx (x = 2u)

= 2

∫π/4
0

cos
2(2u) ln(cotu)du =: 2I.

Setting J :=

∫π/4
0

sin
2(2u) ln(cotu)du we directly see integrating by parts that

I− J =

∫π/4
0

cos(4u) ln(cotu)du =
1

2
, so

J = I−
1

2
(1)

But also I =

∫π/4
0

(1− sin
2(2u)) ln(cotu)du = G− J

(1)
= G+

1

2
− I, where G =

∫π/4
0

ln (cot x) dx is the

Catalan’s constant,
8

so S = 2I = G+
1

2
. �

Remark: Using the identity

(
n

k

)−1

= (n+ 1)

∫
1

0

tk(1− t)n−k, the given integral can be transformed

to the sum

∞∑
n=1

4
n(

2n
n

)
(2n+ 1)(2n− 1)

which has been discussed on the Art Of Problem Solving

forum (http://www.artofproblemsolving.com/Forum/viewtopic.php?f=296&t=511138) and is

the source of the problem.

V2-6 Proposed by the editor

Let k be a positive integer. Show that

∑
n≥1

1

(2n− 1)(2n− 3) · · · (2n− 2k− 1)
=

(−1)k2k−1

k · k!
(
2k
k

) .
8
see http://en.wikipedia.org/wiki/Catalan%27s_constant#Integral_identities
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Solution : O K, Higher Institute for Applied Sciences and Technology, Damascus, Syria

For integers n and k such that k ≥ 0, we define A
(k)
n by

A
(k)
n =

2
k k!

(2n− 1)(2n− 3) · · · (2n− 2k− 1)

Clearly, for k > 0 we have

A
(k−1)
n −A

(k−1)
n+1

=
2
k−1 (k− 1)!

(2n− 1)(2n− 3) · · · (2n− 2k+ 1)
−

2
k−1 (k− 1)!

(2n+ 1)(2n− 1) · · · (2n− 2k+ 3)

=
2
k−1 (k− 1)!(2n+ 1 − (2n− 2k+ 1))

(2n+ 1)(2n− 1) · · · (2n− 2k+ 1)

=
2
k k!

(2n+ 1)(2n− 1) · · · (2n− 2k+ 1)
= Akn+1

Taking the sum as n varies from 0 to m− 1 we obtain

m∑
n=1

A
(k)
n =

m−1∑
n=0

A
(k)
n+1

=

m−1∑
n=0

(A
(k−1)
n −A

(k−1)
n+1

) = A
(k−1)
0

−A
(k−1)
m

Letting m tend to +∞ we obtain

∞∑
n=1

A
(k)
n = A

(k−1)
0

=
(−1)k2k−1 (k− 1)!

1 · 3 · · · (2k− 1)
=

(−1)k22k−1 (k− 1)!k!

(2k)!
.

Dividing both sides by 2
k k! we obtain the desired result. �

Remark by the editor:

The solution I had given to this one is so lengthy that I wouldn’t even dare to write. The only

‘‘advantage’’ I can see over the beautiful telescoping trick of the above solution is that it may

lead to a solution in cases that we cannot telescope the sum and that it may give (non trivial)

identities as side results. For example one can show using this method that for N 3 k ≥ 3:

∑
n≥0

1

(2n+ 1)(3n+ 2) · · · (kn+ k− 1)
=

1

k!

k∑
m=2

(−1)m−1

(
k

m

)
(m− 1)mk−2

(
π

2
cot

π

m
− lnm+

m−1∑
`=1

cos
2`π

m
· ln
(
sin

`π

m

))
.

The main steps are:

1. decompose the summand to partial fractions

2. changing the order of summation after writing

∑
n≥1

= lim
N→+∞

N∑
n=1

,

3. writing the inner sum in terms of the Digamma function Ψ(x) (http://en.wikipedia.org/

wiki/Digamma_function)
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4. use that Ψ(x) = ln x+O(x−1) x→ +∞ and maybe some other properties of this function.
9

V2-7 Proposed by the editor

Evaluate

n∑
k=0

(−1)k+1

(
n
k

)
2k− 1

.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
Consider the rational fraction

Rn(X) =
n!

X(X+ 1) · · · (X+ n)

We know that there exist λ0, λ1, . . . , λn such that

Rn(X) =

n∑
j=0

λk
X+ k

where λk can be calculated by

λk = lim
x→−k

(x+ k)Rn(x) =
n!

(−k)(1 − k) · · · (−1)(1)(2) · · · (n− k)
= (−1)k

(
n

k

)
Thus

Rn(X) =

n∑
k=0

(−1)k
(
n
k

)
X+ k

In particular, for X = −1/2 we obtain

n∑
k=0

(−1)k+1

(
n
k

)
2k− 1

=
2
nn!

1 · 3 · · · (2n− 1)
=

4
n(

2n
n

)
�

Solution 2: Moubinool Omarjee, Lycée Henri IV, Paris, France

Denote A(n) :=

n∑
k=0

(−1)k+1

(
n
k

)
2k− 1

. Then

A(n) = 1 −

n∑
k=1

(−1)k
(
n
k

)
2k− 1

= 1 −

n∑
k=1

(
n

k

)
(−1)k

∫
1

0

t2k−2 dt

1 −

∫
1

0

∑n
k=1

(
n
k

)
(−1)kt2k

t2
dt =

= 1 −

∫
1

0

∑n
k=0

(
n
k

)
(−1)kt2k − 1

t2
dt =

= 1 −

∫
1

0

(1 − t2)n − 1

t2
dt.

9
see http://www.frm.utn.edu.ar/analisisdsys/MATERIAL/Funcion_Gamma.pdf for example.
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Denoting B(n) :=

∫
1

0

(1 − t2)n − 1

t2
dt, an integration by parts gives

B(n) =
(1 − t2)n − 1

−t

∣∣∣∣∣
1

0

−

∫
1

0

n(−2t)(1 − t2)n−1

−t
dt = 1−2n

∫
1

0

(1−t2)n−1 dt
t=cosu
= 1−2n

∫π/2
0

sin
2n−1 udu

So A(n) can be written in terms of Wallis’ integral
10

and we get

A(n) = 2n

∫
1

0

sin
2n−1 udu = 2n

(2n− 2)(2n− 4) · · · 2
(2n− 1)(2n− 3) · · · 3 · 1

=
((2n)(2n− 2)(2n− 4) · · · 2)2

((2n)(2n− 1)(2n− 2) · · · 3 · 2 · 1)
=

(2nn!)2

(2n)!
=

4
n(

2n
n

) .
�

Comment by the editor: The above solution holds for n ≥ 1. But trivially A(0) =
4

0(
2·0
0

) so

A(n) =
4
n(

2n
n

) for n ≥ 0.

Solution 3: by the editor

This one came up from the solution I gave to problem V2-6. Using the method Omran Kouba

used on Solution 1 to determine the partial fractions decomposition of Rn(X), we can see that

1

(2n− 1)(2n− 3) · · · (2n− k− 1)
=

k∑
m=0

(−1)k−m
(
k
m

)
2kk!

· 1

2n− 2m− 1

so, for n = 1 on the above we get the desired result. �

V2-8 Let An,m,k :=
(−1)m−1

m2nnm

(
n

k

)
km, where m,n are positive integers and k is a non-negative integer.

1. Can we find a sequence {am}m≥1 and n0 ∈ N such that N 3 n ≥ n0 ⇒
∣∣∣∣∣
n∑
k=0

An,m,k

∣∣∣∣∣ < am for

every m, with

+∞∑
m=1

am being convergent?

2. (*) Is it true that, in the case that lim
n→+∞

n∑
k=0

An,m,k = am ∈ R m ≥ 1 with

∑
m≥1

am convergent,

then lim
n→+∞

n∑
k=0

∑
m≥1

An,m,k =
∑
m≥1

am?

10
see http://en.wikipedia.org/wiki/Wallis%27_integrals
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3. Evaluate

lim
n→+∞ 1

n

(
n∏
`=0

(n+ `)C
`
n

) 1

2n

, where C`n =

(
n

`

)
,

if it exists.

Solution 1: O K, Higher Institute for Applied Sciences and Technology, Damascus,
Syria
1. Note that for every n and m we have∣∣∣∣∣

n∑
k=0

An,m,k

∣∣∣∣∣ = 1

m2nnm

n∑
k=0

(
n

k

)
km ≥ 1

m2nnm

(
n

n

)
nm =

2
−n

m

Thus, for every n0 ∈ N we have

sup
n≥n0

∣∣∣∣∣
n∑
k=0

An,m,k

∣∣∣∣∣ ≥ 2
−n0

m

and consequently ∑
m≥1

(
sup
n≥n0

∣∣∣∣∣
n∑
k=0

An,m,k

∣∣∣∣∣
)

= +∞
This answers negatively the first question.

2. We will use Bernstein’s proof of Weirstrass’ theorem.

Theorem (Weirstrass). Let f : [0, 1] −→ R be a continuous function. Then the sequence of functions

{Bn(f, ·)}n≥0 defined by

Bn(f, x) =

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1 − x)n−k

converges uniformly on [0, 1] to f.

Applying this to fm(x) =
(−x)m

m
and noting that

n∑
k=0

An,m,k = Bn

(
fm,

1

2

)
we conclude that

lim
n→∞

n∑
k=0

An,m,k = fm

(
1

2

)
=

(−1)m−1

m2m

def
= am

Using the well-known expansion ln(1+x) =

∞∑
m=1

(−1)m−1

m
xm that is valid for x ∈ (−1, 1], we conclude

that ∑
m≥1

am = ln

(
1 +

1

2

)
= ln

(
3

2

)
(1)

On the other hand, using the same expansion we have∑
m≥1

An,m,k =
1

2n

(
n

k

)∑
m≥1

(−1)m−1

m

(
k

n

)m
=

1

2n

(
n

k

)
ln

(
1 +

k

n

)
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It follows that

n∑
k=0

∑
m≥1

An,m,k

 = Bn

(
f,

1

2

)
where f : [0, 1]→ R, f(x) = ln(1 + x). Thus, applying the same theorem again we conclude that

lim
n→∞

n∑
k=0

∑
m≥1

An,m,k

 = lim
n→∞Bn

(
f,

1

2

)
= f

(
1

2

)
= ln

(
3

2

)
(2)

Comparing (1) and (2) we see that

lim
n→∞

n∑
k=0

∑
m≥1

An,m,k

 =
∑
m≥1

am.

This answers 2 positively.

3. We have shown in (2) that

lim
n→∞ 1

2n

n∑
k=0

(
n

k

)
ln

(
1 +

k

n

)
= ln

(
3

2

)
Using the continuity of x 7→ ex we conclude that

lim
n→∞ 1

n

(
n∏
k=0

(n+ k)(
n
k)

)2
−n

=
3

2
,

which is the desired conclusion. �

Solution 2 (for part 3): Michael Lambrou, University of Crete, Heraklion, Crete, Greece.

Setting A(n) :=
1

2n

n∑
k=0

ln

(
1 +

k

n

)Ck
n

, we show that An → ln(3/2). We use that

1.

(
n

k

)
=

(
n

n− k

)
,

2.

n∑
k=0

(
n

k

)
= 2

n ∧

n∑
k=0

(
n

k

)
k = 2

n−1n ∧

n∑
k=0

(
n

k

)
k2 = 2

n−2(n+ n2)

⇒ n∑
k=0

(
n

k

)
(n2 − 4kn+ 4k2) = 2

nn,

3. For y > x > 0, from the Mean Value Theorem in [x, y] we have that logy− log x <
1

x
(y− x).
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From 3. we have

0 ≤ log
9

4
− log

(
2 +

k(n− k)

n2

)
≤ 1

2 + k(n−k)
n2

(
9

4
− 2 −

k(n− k)

n2

)
≤ 1

2

(
9

4
− 2 −

k(n− k)

n2

)
=
n2 − 4kn+ 4k2

8n2
.

Writing the sum backwards, from 1.:

n∑
k=0

(
n

k

)
log(1 +

k

n
) =

1

2

n∑
k=0

(
n

k

)
log(1 +

k

n
) +

1

2

n∑
k=0

(
n

n− k

)
log(1 +

n− k

n
)

=
1

2

n∑
k=0

(
n

k

)(
log(1 +

k

n
) + log(1 +

n− k

n
)

)

=
1

2

n∑
k=0

(
n

k

)
log

(
2 +

k(n− k)

n2

)
,

hence

∣∣∣∣∣log(3/2) − 1

2n

n∑
k=0

(
n

k

)
log

(
1 +

k

n

)∣∣∣∣∣ =
∣∣∣∣∣ 12 log

9

4
−

1

2
· 1

2n

n∑
k=0

(
n

k

)
log

(
2 +

k(n− k)

n2

)∣∣∣∣∣
=

∣∣∣∣∣ 12 · 1

2n

n∑
k=0

(
n

k

)(
log

9

4
− log

(
2 +

k(n− k)

n2

))∣∣∣∣∣
≤

∣∣∣∣∣ 12 · 1

2n

n∑
k=0

(
n

k

)
n2 − 4kn+ 4k2

8n2

∣∣∣∣∣
2.
=

1

2
· 1

2n
· 2

nn

8n2
=

1

16n
→ 0.

�

Remarks: 1) Part 3 of the above problem has been discussed on different places around the web,

such as the Art Of Problem Solving forum and the Romanian Mate Forum. It has also been

discussed on the Greek forum www.mathematica.gr (see http://www.mathematica.gr/forum/

viewtopic.php?f=9&t=10632) where the above solution was given, an other approach by Deme-

tres Christofides, and a partial solution by the editor, where the justification of part 2. here was

missing.

2) Demetres Christofides also answered part 1 negatively.
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