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ABSTRACT 

 

This article presents a method for approaching three-dimensional models for 

n-dimensional hypercubes through polar zonohedra, which – under certain 

conditions – constitute orthographic isometric projections of such 

hypercubes. The paper then goes on to present certain sections of the solids 

in question and the creation of tessellations on the plane. In order to design 

the zonohedra, use was made of the Rhino program, which combined with 

the Grasshopper routine allows for the parametric control of the geometric 

structure of the solid. In other words, it shows – through the proper 

manipulation of the design algorithm – how zonohedra are produced, 

constituting projections of higher-dimensional hypercube spaces in three-

dimensional space.  

Subsequently, the sections of the zonohedra create planar tessellations on 

the planes, which change depending on how the n degree of the zonohedron 

changes. This results in a table that juxtaposes projections of hypercubes in 

three-dimensional space and tessellations of a plane, some of which are 

already known, thus suggesting some sort of correlation between them. This 

study serves as a formulation of the architectural question surrounding the 

concept of the projection of polyhedra in general dimension on a plane and 

suggests an approach involving the parametric control of structures, thus 

bypassing – to a certain degree – the need for supervision. It also provides 

an answer to the general question regarding the contemporary role of 

geometry in the education of architects, which focuses mainly on the 



gradual detachment of the architect from the need to constantly monitor the 

produced form.  

 

From platonic solids to polar zonohedra 

The Minkowski sum of n vectors in space is a convex polyhedron  with n(n-

1) faces, where n is the number of the different directions of the vectors. If 

the vectors are equal in size, then the faces of the convex polyhedron will be 

shaped as rhombi and the polyhedron will constitute an equilateral 

zonohedron. Equilateral zonohedra are considered as 3-dimensional 

projections of n-dimensional hypercubes. The more symmetrised the initial 

vectors are, the more symmetrical the resulting zonohedra will be.  
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Fig. 4 

The most symmetric zonohedra are those resulting from platonic solids, 

with the vectors directed towards the linear segments, which project the 

vertices of each polyhedron from its centre. Thus, the cube and regular 

tetrahedron result in a rhombic dodecahedron (Fig. 1), the regular 

octahedron results in a cube (Fig. 2), the regular icosahedron results in 

Kepler’s golden rhombic triacontahedron (Fig. 3), whose faces are rhombi 

with a diagonal ratio equal to the golden ratio Φ, and the regular 

dodecahedron results in rhombic enneacontahedron (Fig. 4), whose faces 

consist of two types of rhombi (60 of the one type and 30 of the other). The 

above zonohedra constitute 3D models of hypercubes. 

  

Fig. 5 

 

Polar zonohedra form a unique category of zonohedra. Let us take a regular 

n-gon in the plane and line segments ε1, ε2,..εν, which connect the centre O 

of the polygon to its vertices. Then let us take the equal vectors δ1, δ2,…δν, 

with O being the common starting point, which are projected in the plane of 

the n-gon by ε1, ε2,…εν. The zonohedron resulting from the Minkowski sum 

of vectors δ1, δ2,…δν, which is called a polar zonohedron, is a convex 



polyhedron whose n-fold axis is the vertical line in the centre of the plane of 

the polygon with n(n-1) rhomboid faces laid out in zones around the axis 

(Fig. 5). The algorithm allows us to create polar zonohedra by controlling 

the number of vectors, their inclination to the plane of each polygon and 

their size. This results in a variety of forms. When several of the sides of a 

regular polygon are infinite, then the zonohedron leans towards a surface of 

revolution. It has been observed that when the angle of inclination of the 

vectors to the plane of the polygon is 36.264°, the n-polar zonohedron is 

considered a 3D orthographic isometric projection of the n-hypercube.  

 

The transition from smaller to larger dimensions 

Considering that the cube can create a spatial tessellation, which – with the 

appropriate sections – can result in planar tessellations, we will explore the 

possibility of creating spatial structures and, by extension, planar 

tessellations from hypercubes by working with their three-dimensional 

models.  

 

Fig. 6 

This exploration is also based on the fact that each n-polar zonohedron and, 

consequently, each n-hypercube can result from the composition of 

zonohedra of a lower order. 

Thus, for example, the rhombic triacontahedron (which is a 3D model of 

the 6-cube) can result as follows: Let us take the parallelohedra defined by 

two triads of the six vectors that determine the rhombic triacontahedron. 

The combination of two oblong and two oblate parallelohedra (Fig. 6) 

results in a rhombic dodecahedron (3D model of the 4-cube) (Fig. 7). This, 

along with the use of six additional parallelohedra, results in a rhombic 



icosahedron (3D model of the 5-cube) (Fig. 8). The rhombic icosahedron 

combined with 10 parallelohedra, results in a rhombic triacontahedron 

(which is a 3D model of the 6-cube) (Fig. 9).  
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