Search found 308 matches

by Grigorios Kostakos
Wed Nov 11, 2015 1:39 pm
Forum: Real Analysis
Topic: $\int_{0}^{+\infty}{\frac{\log({\frac{1}{x}})}{(1+x)^n}dx}$
Replies: 3
Views: 3094

$\int_{0}^{+\infty}{\frac{\log({\frac{1}{x}})}{(1+x)^n}dx}$

For \(n\in{\mathbb{N}}\,,\;n>2\,,\) prove that \[\displaystyle \int_{0}^{+\infty}{\frac{\log\bigl({\tfrac{1}{x}}\bigr)}{(1+x)^n}\, dx}=\frac{1}{n-1}\mathop{\sum}\limits_{k=1}^{n-2}{\frac{1}{k}}\,.\]
by Grigorios Kostakos
Wed Nov 11, 2015 1:07 pm
Forum: Calculus
Topic: $\int_{0}^{\infty }\frac{1}{\sqrt{x}}e^{-x}dx$
Replies: 2
Views: 2525

Re: $\int_{0}^{\infty }\frac{1}{\sqrt{x}}e^{-x}dx$

\[\displaystyle \int_{0}^{\infty }\frac{1}{\sqrt{x}}e^{-x}dx=\int_{0}^{\infty }{x^{\frac{1}{2}-1}e^{-x}dx}=\Gamma\bigl({\tfrac{1}{2}}\bigr)\] From Euler's formula \(\Gamma(z)\,\Gamma(1-z)=\frac{\pi}{\sin(\pi\,z)}\) for \(z=\frac{1}{2}\) we have that \begin{align*} \Gamma^2\bigl({\tfrac{1}{2}}\bigr)&...
by Grigorios Kostakos
Wed Nov 11, 2015 12:51 pm
Forum: Calculus
Topic: Integral with trigonometric
Replies: 2
Views: 2456

Re: Integral with trigonometric

For \(a>0\): \begin{align*} I&=\int_0^{+\infty} {\frac{\sin^2 x}{x^2 \,(x^2+a^2 )}\, {\rm d}x}\\ &=\frac{1}{a^2}\int_0^{+\infty}{\frac{\sin^2 x}{x^2}\, {\rm d}x}-\frac{1}{a^2}\int_0^{+\infty} {\frac{\sin^2 x}{x^2+a^2}\, {\rm d}x}\\ &=\frac{1}{a^2}\int_0^{+\infty}{\frac{\sin^2 x}{x^2}\, {...
by Grigorios Kostakos
Wed Nov 11, 2015 12:48 pm
Forum: Calculus
Topic: $\int_{0}^{\infty}{\cos({x^2})\,dx}$
Replies: 1
Views: 2162

$\int_{0}^{\infty}{\cos({x^2})\,dx}$

Calculate the integral:

$$\int_{0}^{\infty}{\cos({x^2})\,dx}\,.$$
by Grigorios Kostakos
Wed Nov 11, 2015 12:24 pm
Forum: Calculus
Topic: $\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}$
Replies: 1
Views: 2286

$\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}$

Calculate the integral:

$$\int_{0}^{\infty}{{\mathrm{e}}^{-{\mathrm{i}}\,x^2}dx}\,.$$
by Grigorios Kostakos
Wed Nov 11, 2015 12:11 pm
Forum: Calculus
Topic: $\int_{0}^{\infty}{\frac{x^{a}}{1+x^{a}}dx}$
Replies: 1
Views: 2158

$\int_{0}^{\infty}{\frac{x^{a}}{1+x^{a}}dx}$

For the values of \(a\) for which the integral converges, calculate the integral \[\displaystyle\int_{0}^{+\infty}{\frac{x^{a}}{1+x^{a}}dx}\,.\]
by Grigorios Kostakos
Wed Nov 11, 2015 12:05 pm
Forum: Calculus
Topic: Integral and power series
Replies: 1
Views: 2326

Re: Integral and power series

We give a solution to some point: \begin{align*} I&=\int_{0}^{1}\left ( \left \lfloor \frac{2}{x} \right \rfloor-2\left \lfloor \frac{1}{x} \right \rfloor \right )dx\\ &\mathop{=\!=\!=\!=\!=\!=\!=}\limits^{\begin{subarray}{c} {t\,=\,\frac{1}{x}} \\ {dx\,=\,-\frac{1}{t^2}\,dt} \end{subarray}}...
by Grigorios Kostakos
Wed Nov 11, 2015 5:11 am
Forum: Real Analysis
Topic: Integral involving \(\Gamma\) function
Replies: 4
Views: 4125

Integral involving \(\Gamma\) function

Evaluate \[\displaystyle\int_{0}^{1}\log({\Gamma(x+1)})\,dx\,,\] where \(\Gamma(x)\) is the gamma function.
by Grigorios Kostakos
Wed Nov 11, 2015 4:30 am
Forum: Real Analysis
Topic: \(\sum_{n=1}^{+\infty}({-1})^{n+1}\frac{\sin{n}}{n}\)
Replies: 4
Views: 3968

\(\sum_{n=1}^{+\infty}({-1})^{n+1}\frac{\sin{n}}{n}\)

Find \(\displaystyle\mathop{\sum}\limits_{n=1}^{+\infty}({-1})^{n+1}\frac{\sin{n}}{n}\,.\)
by Grigorios Kostakos
Wed Nov 11, 2015 4:13 am
Forum: Real Analysis
Topic: \(\sum(-1)^{n}(\tfrac{1}{\sqrt{n}}+\tfrac{(-1)^{n-1}}{n})\)
Replies: 1
Views: 1930

\(\sum(-1)^{n}(\tfrac{1}{\sqrt{n}}+\tfrac{(-1)^{n-1}}{n})\)

Examine if the series \[\displaystyle\mathop{\sum}\limits_{n=1}^{\infty}{(-1)^{n}\biggl({\frac{1}{\sqrt{n}}+\frac{(-1)^{n-1}}{n}}\biggr)}\] converges conditionally.