Welcome to mathimatikoi.org forum; Hope you enjoy you stay here!

Sequence of a bounded variation

General Topology
Post Reply
User avatar
Tolaso J Kos
Administration team
Administration team
Articles: 2
Posts: 853
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Sequence of a bounded variation

#1

Post by Tolaso J Kos » Thu Jul 14, 2016 1:39 pm

Let \( x_n \) be a sequence in the metric space \( (X, d) \) . We define \( x_n \) to be of a bounded variation if:

$$\sum_{n=1}^{\infty}d\left ( x_n, x_{n+1} \right )<+\infty$$

Prove the following:
a) If \( x_n \) is of a bounded variation then it is a standard / basic sequence. (therefore bounded). Does the converse hold?

b) If \( x_n \) is a standard/ basic sequence , then there exists a subsequence of a bounded variation.

c) If every subsequence of \( x_n \) is of a bounded variation , then \( x_n \) is a basic/ standard sequence.
Imagination is much more important than knowledge.
Post Reply