Welcome to mathimatikoi.org;a forum of university mathematics. Enjoy your stay here.

The number is rational

General Mathematics
Post Reply
User avatar
Tolaso J Kos
Administrator
Administrator
Articles: 2
Posts: 854
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

The number is rational

#1

Post by Tolaso J Kos » Tue Nov 29, 2016 12:42 pm

Let $n \in \mathbb{N}$ . Prove that the number

$$\mathfrak{n}=\sqrt{\underbrace{1111\cdots11}_{2n} - \underbrace{2222\cdots22}_{n}}$$

is rational.
Imagination is much more important than knowledge.
User avatar
Riemann
Articles: 0
Posts: 168
Joined: Sat Nov 14, 2015 6:32 am
Location: Melbourne, Australia

Re: The number is rational

#2

Post by Riemann » Tue Jan 24, 2017 9:07 pm

We begin by the simple observation that every number $n \in \mathbb{N}$ can be written as $\sum \limits_{k=0}^{n-1}a_k 10^k$ , $0\leq a_k \leq 9$. Thus:

\begin{align*}
\mathfrak{n} &= \sqrt{\underbrace{111\cdots11}_{2n} - \underbrace{222\cdots22}_{n}} \\
&= \sqrt{\sum_{k=0}^{2n-1} 10^{k} -2\sum_{k=0}^{n-1} 10^k}\\
&=\sqrt{\frac{1}{9} \left ( 10^{2n}-1 \right ) - \frac{2}{9} \left ( 10^n -1 \right ) } \\
&= \sqrt{\frac{\left ( 10^n-1 \right )^2}{9}} \\
&=\frac{10^n-1}{3} \\
&=3 \left ( 1 + 10 + 100 + \cdots +10^{n-1} \right ) \\
&= \underbrace{333\cdots33}_{n}
\end{align*}
$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^s}= \prod_{p \; \text{prime}}\frac{1}{1-p^{-s}}$
Post Reply