- Give an example of a descending sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty closed subsets of metric space $(\mathbb{R}, |\cdot|)$, such that $\bigcap_{n=1}^{\infty}F_n=\varnothing$.
- Give an example of a descending sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty closed subsets of metric space $(\mathbb{Q}, |\cdot|)$, such that ${\rm{diam}}(F_n)\xrightarrow{n\to+\infty} 0$ and $\bigcap_{n=1}^{\infty}F_n=\varnothing$.
Welcome to mathimatikoi.org forum; Enjoy your visit here.
Two examples
- Grigorios Kostakos
- Founder
- Posts: 460
- Joined: Mon Nov 09, 2015 1:36 am
- Location: Ioannina, Greece
Two examples
Grigorios Kostakos
Who is online
Users browsing this forum: No registered users and 1 guest