Integral inequality (2)

Real Analysis
Post Reply
User avatar
Grigorios Kostakos
Founder
Founder
Posts: 461
Joined: Mon Nov 09, 2015 1:36 am
Location: Ioannina, Greece

Integral inequality (2)

#1

Post by Grigorios Kostakos »

For \(0\leqslant{k}\leqslant1\) prove that \[\displaystyle\int_{0}^{2\pi}{\sqrt{1-k^2\sin^2{x}}\,dx}\leqslant2\pi\sqrt{1-\frac{k^2}{2}}\,.\]
Grigorios Kostakos
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Re: Integral inequality (2)

#2

Post by Papapetros Vaggelis »

Good evening.

Let \(\displaystyle{I=\int_{0}^{2\pi}\sqrt{1-k^2\cdot \sin^2 x}\,dx}\)

From Cauchy-Schwarz inequality we have

\(\displaystyle{I\leq \sqrt{\int_{0}^{2\pi}\left(1-k^2\cdot \sin^2 x\right)\,dx}\cdot \sqrt{\int_{0}^{2\pi}\,dx}=2\pi\sqrt{1-\frac{k^2}{2}}}\) because,

\(\displaystyle{\sqrt{\int_{0}^{2\pi}\,dx}=\sqrt{2\pi}}\)

and

\(\displaystyle{\int_{0}^{2\pi}\left(1-k^2\cdot \sin^2 x\right)\,dx=}\)

\(\displaystyle{=\int_{0}^{2\pi}\left[1-\frac{k^2}{2}\cdot\left(1-\cos (2x)\right)\right]\,dx}\)

\(\displaystyle{=\int_{0}^{2\pi}\left[1-\frac{k^2}{2}+\frac{k^2}{2}\cdot \cos (2x)\right]\,dx}\)

\(\displaystyle{=\left[\left(1-\frac{k^2}{2}\right)\cdot x+\frac{k^2}{4}\cdot \sin (2x)\right]_{0}^{2\pi}}\)

\(\displaystyle{=2\pi\left(1-\frac{k^2}{2}\right)}\).
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Integral inequality (2)

#3

Post by Tolaso J Kos »

A nice result , using the above , is the following:
Given an ellipse $\mathcal{C}: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ we know that the length of it is given by the elliptic integral:

$$\ell = 4a \int_{0}^{\pi/2}\sqrt{1-\epsilon^2 \sin^2 t} \, {\rm d}t$$

where $\epsilon$ is the eccecentrity then $\displaystyle \ell \leq 2a\pi \sqrt{1- \frac{\epsilon^2}{2}}$ holds.
Proof:

We just apply the Cauchy - Schwartz inequality hence:

\begin{align*}
\ell &= 4a \int_{0}^{\pi/2} 1\cdot \sqrt{1-\epsilon^2 \sin^2 t}\, {\rm d}t \\
&\leq 4a\left ( \int_{0}^{\pi/2}1 \, {\rm d}t \right )^{1/2} \left ( \int_{0}^{\pi/2}\left ( 1-\epsilon^2 \sin^2 t \right )\, {\rm d}t \right )^{1/2} \\
&=2a \pi \sqrt{1- \frac{\epsilon^2}{2}}
\end{align*}

The upper bound is very close to the length of the ellipse when $\epsilon \rightarrow 0$ . In fact the error is $\mathcal{O}(\epsilon^4)$ as $\epsilon \rightarrow 0$.
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 35 guests