Fourier series

Real Analysis
Post Reply
Papapetros Vaggelis
Community Team
Posts: 426
Joined: Mon Nov 09, 2015 1:52 pm

Fourier series

#1

Post by Papapetros Vaggelis »

Let \(\displaystyle{\delta\in\left(0,\pi\right)}\) and \(\displaystyle{f:\mathbb{R}\longrightarrow \mathbb{R}}\) be a \(\displaystyle{2\,\pi}\) -



periodical function given by

\(\displaystyle{f(x)=\begin{cases}1\,\,\,\,\,,-\delta\leq x\leq \delta\\
0\,\,\,\,\,,\,\,\delta<\left|x\right|\leq \pi \end{cases}}\)





Calculate the \(\displaystyle{\rm{Fourier}}\) series of \(\displaystyle{f}\) and prove that

1. \(\displaystyle{\sum_{n=1}^{\infty}\dfrac{\sin\,(n\,\delta)}{n}=\dfrac{\pi-\delta}{2}}\)



2. \(\displaystyle{\sum_{n=1}^{\infty}\dfrac{\sin^2\,(n\,\delta)}{n^2\,\delta}=\dfrac{\pi-\delta}{2}}\)



3. \(\displaystyle{\sum_{n=1}^{\infty}\dfrac{1}{\left(2\,n-1\right)^2}=\dfrac{\pi^2}{8}}\)
User avatar
Tolaso J Kos
Administrator
Administrator
Posts: 867
Joined: Sat Nov 07, 2015 6:12 pm
Location: Larisa
Contact:

Re: Fourier series

#2

Post by Tolaso J Kos »

Hello Vaggelis. Here is a solution to this nice exercise.

First of all we expand \( f \) in Fourier series. The function is a piecewise discontinuous function yet it can be expanded into Fourier Series. Let us compute the coefficients:

\( \require{cancel} {\color{gray} \blacksquare} \;\; \displaystyle a_0= \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\, {\rm d}t= \frac{1}{\pi}\left [ \cancelto{0}{\int_{-\pi}^{-\delta}0 \, {\rm d}t}+ \int_{-\delta}^{\delta}\, {\rm d}t+ \cancelto{0}{\int_{\delta}^{\pi}0 \, {\rm d}t} \right ]=\frac{2\delta}{\pi} \)

\( \require{cancel} {\color{gray} \blacksquare} \;\; \displaystyle a_n= \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos nt \, {\rm dt}= \frac{1}{\pi} \left [ \cancelto{0}{\int_{-\pi}^{-\delta}0 \, {\rm d}t} + \int_{-\delta}^{\delta}\cos nt \, {\rm d}t + \cancelto{0}{\int_{\delta}^{\pi} 0 \, {\rm d}t} \right ]=\frac{2\sin \delta n}{\pi n} \)

\( {\color{gray} \blacksquare} \;\; \displaystyle b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\sin nt \, {\rm d}t = 0 \)

Hence the Fourier series of \( f \) is :

$$f(x)= \frac{\delta}{\pi}+ \sum_{n=1}^{\infty}\frac{2\sin \delta n}{\pi n}\; \cos nx$$

a) For \( x =0 \) the above formula gives us:

$$1= \frac{\delta}{\pi}+ \sum_{n=1}^{\infty}\frac{2\sin n\delta}{\pi n}\Rightarrow \sum_{n=1}^{\infty}\frac{\sin n \delta}{n} = \frac{\pi-\delta}{2}$$

b) By making use of Parseval's identity we have that:

$$4\sum_{n=1}^{\infty}\frac{\sin^2 n \delta}{\pi^2 n^2}+ \frac{2\delta^2}{\pi^2}= \frac{2\delta}{\pi}\Rightarrow \sum_{n=1}^{\infty}\frac{\sin^2 n \delta}{n^2 \delta}= \frac{\pi-\delta}{2}$$

c) Taking advantage of question b) and subbing \( \delta=\frac{\pi}{2} \) we get the desired result since \( \sin^2 \frac{\pi n}{2} \) is \( 1 \) at odd and \( 0 \) at even.

Some comments:
The series \( \displaystyle \sum_{n=1}^{\infty}\frac{1}{\left ( 2n-1 \right )^2}= \sum_{n=0}^{\infty}\frac{1}{\left ( 2n+1 \right )^2} \) is a special case of the \( \lambda \) function, that is \( \lambda(2) \). The \( \lambda \) function is defined as:

$$\lambda(s)= \sum_{n=0}^{\infty}\frac{1}{\left ( 2n+1 \right )^s}, \; \mathfrak{Re}(s)>1$$

and it has a closed form given by

$$\zeta(s)= \sum_{n=1}^{\infty}\frac{1}{(2n)^s}+ \sum_{n=0}^{\infty}\frac{1}{(2n+1)^s} \Leftrightarrow \zeta(s)= \frac{1}{2^s}\zeta(s) + \sum_{n=0}^{\infty}\frac{1}{(2n+1)^s} \Leftrightarrow$$
$$\Leftrightarrow \sum_{n=0}^{\infty}\frac{1}{(2n+1)^s} =(1-2^{-s})\zeta(s) \tag{1}$$

And one more thing (may be off topic but I think it's worth it). Using the closed formula we derived for the \( \lambda \) function one can find the functional equation of \( \eta \) Dirichlet, that is of the function \( \displaystyle \eta(s)= \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^s} , \; \mathfrak{Re}(s)>1 \). Indeed, since the sum converges absolutely that means we can re-arrange its terms by splitting it up into even and odd terms.

$$\begin{aligned}
\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^s} &=\left ( 1+\frac{1}{3^s}+ \frac{1}{5^s}+\cdots \right )- \left ( \frac{1}{2^s}+ \frac{1}{4^s}+ \frac{1}{6^s}+\cdots \right ) \\
&= \sum_{n=0}^{\infty}\frac{1}{(2n+1)^s}- \sum_{n=1}^{\infty}\frac{1}{(2n)^s}\\
&=\sum_{n=0}^{\infty} \frac{1}{(2n+1)^s}- \frac{1}{2^s} \sum_{n=1}^{\infty}\frac{1}{n^s}\\
&\overset{(1)}{=}\left ( 1-2^{-s} \right )\zeta(s)- \frac{1}{2^s}\zeta(s)\\
&=\left ( 1-2^{1-s} \right )\zeta(s)
\end{aligned}$$
Imagination is much more important than knowledge.
Post Reply

Create an account or sign in to join the discussion

You need to be a member in order to post a reply

Create an account

Not a member? register to join our community
Members can start their own topics & subscribe to topics
It’s free and only takes a minute

Register

Sign in

Who is online

Users browsing this forum: No registered users and 42 guests